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A sigma model associated with the Ernst equation is derived. This sigma model is 
described by the Belinsky-Zakharov-type completely integrable equation and is 
formally equivalent to the usual sigma model in curved two-dimensional space. 
The corresponding Lax representation, Bficklund transformation, and diver- 
gence-free currents are obtained. 

1. INTRODUCTION 

The analysis of geometrical structures associated with completely inte- 
grable nonlinear evolution equations (Bullough and Caudrey, 1980) has lead 
to the discovery of interrelations between both different techniques for 
solving such equations and different equations of this class (Wahlquist and 
Estabrook, 1975; Hermann, 1976; Barbashov and Nesterenko, 1980). 
Zakharov and Takhtadjan (1979), bearing in mind the fiber bundle interpre- 
tation of the inverse scattering method, introduced a notion of gauge 
equivalence of nonlinear equations. Namely, two systems of nonlinear 
equations solvable via the inverse scattering method are gauge equivalent if 
corresponding connections are defined on the same fiber bundle and are 
related one with the other by means of a gauge transformation independent 
of a spectral parameter. In the framework of this approach they established 
the gauge equivalence of the nonlinear SchrOdinger equation and the 
continuous isotropic Heisenberg spin chain equation. Lakshmanan and 
Bullough (1980) extended the results of Zakharov and Takhtadjan to the 
case of the generalized SchrOdinger equation (Calogero and Degasperis, 
1978). The gauge equivalent obtained represents a respective generalization 
of the Heisenberg ferromagnet model. 

449 

0020-7748/84/0500-0449503.50/0 �9 1984 Plenum Publishing Corporation 



450 Doktorov and Tarakanov 

On the other hand, Pohlmeyer (1976) showed by the reduction proce- 
dure that the O(n) invariant nonlinear sigma model is intimately related to 
the sine-Gordon equation (n = 3) or its generalizations. This problem was 
further considered by Pohlmeyer and Rehren (1979) and Honerkamp (1981). 
Orfanidis (1980) developed a systematic method of obtaining gauge equiva- 
lents for completely integrable nonlinear equations reproducing along these 
lines, in particular, the results of Zakharov-Takhtadjan and Pohlmeyer. 
Gauge equivalents derived in such a manner have been called sigma models 
associated with given nonlinear equations. The similar problem was consid- 
ered by Reiter (1980). 

In the present paper we derive a sigma model associated with the Ernst 
equation (Ernst, 1968) generalizing thereby the Orfanidis' approach to 
equations with explicit space dependence. It turns out that such a depen- 
dence does not preclude obtaining the corresponding results in a closed 
form. 

Our paper is organized as follows. In Section 2 we briefly review the 
Ernst equation and give the Lax representation for it. In Section 3 an 
associated sigma model is obtained. B~cklund transformations for this 
sigma model derived in Section 4 can be considered a new type of those for 
the gravitational field with axial symmetry. Section 5 is devoted to finding 
divergence-free currents. 

2. ERNST EQUATION 

The Ernst equation describes axially symmetric, stationary configura- 
tions of gravitational field, as well as being equivalent (Witten, 1979; 
Forghcs et al., 1980, 1981) to the axially and mirror symmetric Bogomolny 
equations (Bogomolny, 1976). The most general line element of such config- 
urations can be written 

l [e2V(dp2 + dz2)+p2 d~p2] ds 2 = f (  dt - wdcp ) 2 -  7 

where functions f ,  ~0, and y depend on cylindrical coordinates O and z and 
are independent of t and q0. The vacuum Einstein equations relevant to this 
metric are divided into two parts, of which one includes equations for only f 
and w 

f2 
A l n / +  --;-( V~0)2 = 0 

0 - 
(la) 

(Ib) 
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with V=(0~,00) ,  A = O 2 + p - l O o + O 2 z ,  while the other part gives the 
function y in terms o f f  and 0~. Usually the integration of the equations for y 
with known f and to does not lead to difficulties, by virtue of which we shall 
concentrate in the sequel on the equations (1). Define a new function ~ by 
means of the relations 

f2  f2 ~= ~ ,  ~z=- ~ 0  

where subscripts stand for partial derivatives. Equation (lb) can be then 
considered as the integrability condition for ~. Introducing the complex 
Ernst potential e = f + i~, equations (1) take the compact form 

( R e e ) A e - ( V e )  2 = 0 (2) 

Equation (2) is called the Ernst equation. In the coordinates ~ = p + iz  and 
T1 = p -- i z  the Ernst equation is represented as follows: 

2e~e~ 1 e~ + e n 
- -  - -  = 0  (3)  

where the asterisk denotes complex conjugation. Just this form of the Ernst 
equation will be used in what follows. 

As was pointed out earlier (Maison, 1978; Belinsky and Zakharov, 
1978, 1979; Hauser and Ernst, 1980; Chinea, 1981) the Ernst equation is 
solvable by the inverse scattering method. In particular, it admits the Lax 
representation (the zero-curvature representation) 

~ = U ~ ,  ~k~ = V ~  (4 )  

where matrices U and V depend on e, e~, e n, and their complex conjugate, as 
well as on ~, r/, and a spectral parameter 2~. The compatibility condition for 
the system (4) 

v~-v~ + [ u , v ] = o  (5) 

must coincide with the Ernst equation. Our Lax representation differs from 
known ones and has the form 

u =  o( M,Z§ + M~Z_ )+ �89 M, - M~)Z~ 

V= o-~( N,Z + + N~Z_ )+ �89 W, - N~)Z~ 
(6) 
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with 

e~ e~ e~ 
M1 e + e *  ' M2 e + e *  ' N1 e + e *  

o2 = ~ - i~7 
~,+i~ 

E~ 

e + e *  ' 

The generators Z•  and Z 3 which obey the commutation relations [Z 3, Z• 
= + 2 Z •  [Z+, Z ]  = Z 3 are expressed in terms of the su(1,1) algebra basis 
~-~: 

Z•  - �89 -T- "r2) , Z 3  = 'l" 3 

Here ~-~ = - io t ,  T 2 = - io2, T 3 = O3, and o r are Pauli matrices. 
From the geometrical point of view, matrices U and V can be treated 

(Hermann, 1976; Doktorov, 1980) as coefficients of a connection form on 
the associated vector bundle with the base space R 2 and the standard fiber 
in which a linear representation of the S U ( 1 , 1 )  group acts. Then the system 
(4) of linear equations represents the parallel transport equations for a given 
connection, while the condition (5) states that this connection is flat, i.e., a 
curvature is zero. The changing of a trivialization of the principal fiber 
bundle induces the corresponding changing of the associated bundle triviali- 
zation which is interpreted as a gauge transformation of sections % of the 
associated bundle. (For a comprehensive review of fiber bundles in the 
physical content see, for instance, Trautman, 1981.) 

3. ASSOCIATED SIGMA M O D E L  

Following Zakharov and Takhtadjan (1979) we shall call two nonlinear 
equations to be gauge equivalent if the connections U, V and U', V'  are 
defined on the same bundle and are related one with the other via a gauge 
transformation independent of the spectral parameter h: 

U ' =  g U g  -1  + g ~ g - ~ ,  V '  = g V g  -1  + g , ~ g - i  (7) 

At the same time, the sections % and ~b' are connected by ~k ' =  g%. Here 
g(~, ~) is an element of the S U ( 1 , 1 )  group representation. 

For obtaining a sigma model associated with the Ernst equation we 
take g(~,~l)= %(~,~/, h = 0), where %(~,~, ~) is a solution of the linear 
equations (4). The function g(~, ~) obeys the equations 

g~ = - g U ( ~ ,  = 0 ) ,  g,~ = - g V ( ~ .  = O) (8) 
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The new connection coefficients U' and V' are written then in the form 

U ' = g [ U - U ( X = O ) ] g  - ' ,  V ' = g [ V - V ( ? t = O ) ] g - '  (9) 

We introduce now elements of the moving trihedral (Orfanidis, 1980) 

E+_ =�89 E 2 ) = g Z •  -1, Q = E 3 = g Z 3 g  -1, E2=0,  Q 2 = l  

(ao) 

which obviously satisfy the same commutation relations as Z_+ and Z 3. Just 
Q will be further identified with a sigma field under consideration. From the 
definitions (10) and equations (9) we get equations of motion for Q 

Q~ = [O, gU(X = 0)g- l ] ,  0n = [O, gV(• = 0)g -~] 

and similar relations for E, which can be written as follows: 

Q~ = 2 i (* I /~ ) I /2 (M1E+-M2E+ )' Qn = -2 i (~ /TI ) l /2 (N1E+ - N2E-  ) 

E+~ = i (n /~ ) I /ZM2Q - (M1 - M2)E+, 

E +n = - i ( ~ / ~ ) l / 2 N 2 Q  - ( N  1 - N2)E + (11) 

E ~ = - i (~/~)X/2M1Q + ( M  1 - M2)E_ ,  

E_,7 = i( ~/~l )l/2 N1Q + ( N 1 - Nz) E - 

This gives the equation for Q of the form 

Q~n 2 (MINz+  M z N 1 ) O +  i (~1)-x /2  = ~ + ~  [ ( ~ M I - ~ I N ' ) E + - ( ~ M z - 7 1 N 2 ) E - ]  

(12) 

We must now eliminate from (12) operators E+ and functions Mi, N, in 
favor of Q and its f and 71 derivatives. So, we might show using (11) that the 
first term on the right-hand side of (12) can be transformed as 

2(MxUz + M2N1)Q = - �89 { QI, Q,1 } Q 
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where { , } stands for anticommutator. We have further 

i M I E + = - - ~ ( ~ / ~ ) x / Z ( 2 Q ,  + [Q,Q~]) ,  

+ [e, o,]) ,  

i N2E_ = - ~(~I/~) ' /2(2Qn - [ Q, Qn]) 

Inserting these expressions into (12) yields the gauge equivalent for the 
Ernst equation we need, i.e., associated sigma model 

1 
d e t Q = - I  (13) 

Equation (13) represents a nonlinear relativistic equation which is 
obviously solvable by the inverse scattering method. In particular, the Lax 
representation ~k~ = U'q/, ~b~ = V'q/ is  defined by the matrices 

u'=�89 (14) 

Equation (13) belongs to the Belinsky-Zakharov-type equations (Belinsky 
and Zakharov, 1978) 

(oIQ~IQ-1), "~-(o/Q,Q-1)~ = O, O:~r/ = 0 (15) 

with a particular realization of a = ~ - x +  71-1. It is well known (see, e.g., 
Horv~th and Kiss-Toth, 1982) that the system (15) is invariant under the 
coordinate transformation of the form ~ = a(~), ~ = a*(*/), where a is an 
analytic function. By virtue of this (15) can be formally written as a SU(1,1) 
sigma model in curved two-dimensional space (Bais and Sasaki, 1982; 
Mikhailov and Yaremchuk, 1982), 

+[: (+o)o- ' ]  =o 

where ~ = (OF, 0~), 2t5 = ~ + 4, 2~ = i(~ - ~), with the Lax representation 

vg= 2 ( 1  + -~I/Z)QgQ-Io, v,~ = 2 (1 + ~-I/2)Q~-Q-to, 1 - 2isfl 
1 + 2is~ 
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s is a complex spectral parameter. In this case, however, new coordinates 
and ~ lose their "cylindrical" sense. 

The vector version of equation (13) was considered recently by Chinea 
(1983). In the following section we shall derive a B~icklund transformation 
for equation (13) which can be treated as new type of matrix B~cklund 
transformations for the gravitational field with axial symmetry. 

4. B~,CKLUND TRANSFORMATION FOR ASSOCIATED 
SIGMA MODEL 

Let e be some solution of the Ernst equation and U(e, A), V(e, ~)  be the 
corresponding connection form coefficients. Suppose now there is another 
solution ~ of the Ernst equation with the connection 0(~, ~), f'(~, ~) of the 
same functional form as U and V. Then, by virtue of the gauge invariance of 
the zero-curvature condition (5), the connection U, f" is related with the 
connection U, V by means of a gauge transformation 

~_f = S V S  -1 -I- S~;S -1, 1/'= S Z S  -1 -t- aria -1 (16) 

where S ~ SU(1,1) provided e and ~ are related by the B~cklund trans- 
formation (BT). Hence, BT can be realized as gauge transformation of 
the Lax representation. Such an approach to BT was used by Neveu and 
Papanicolaou (1978) for the sine-Gordon equation and by Orfanidis (1980) 
for the nonlinear SchrOdinger and Korteweg-de Vries equations. As stressed 
by Neveu and Papanicolaou, the spectral parameter ~ must be clearly 
distinguished from the B~cklund parameter appearing in BT. In usual 
approaches, the two parameters are identified. 

The gauge transformation (16) induces the corresponding BT for the 
associated sigma model: 

3 

O_ = E S3iEi (17) 
i = l  

where $3, are matrix elements of the three-dimensional representation of the 
matrix S entering into (16). Hence, for finding BT for the sigma model we 
must at first realize BT for the Ernst equation as a gauge transformation 
with the matrix S ~ SU(1,1)  and obtain then three-dimensional representa- 
tion of S. 

BTs for the Ernst equation have been derived by Harrison (1978), 
Neugebauer (1979), Omote and Wadati (1981), Forgfics et al. (1981), and 
Chinea (1983). We shall use the BT of Omote and Wadati which admits, 
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however, considerable simplification. Namely, 

O - I + K  M (~+~1) -1 
) Q ' = -  0 1 - K  1 -0--Zi-~_~ , /17/2= 

g r =  0 + I + K  N (~+  ~ ) - '  
- 0 + I - K  1 +  0 + I - K  ' 

0-1-~  (~+n)-~ 
8 - 1 + K  M2 0 - 1 + ~  

~i2= 8 + l - x  N (~+~1) - '  
- 0 + 1 + ~  2 +  0 ~ l - f i x  

(18) 

Here 8 = [ i~/2(~+ n)](~+ e*)(~+ ~*), x 2 = 0 2 + 1 + 2 8 ( 1 + ~ ' 2 ) ( 1 - ~ ' 2 ) - 1  ? 
is arbitrary real parameter, ~ 2 = ( i l - ~ ) ( i l + ~ ) - l ,  l is a real Bticklund 
parameter. 

For finding the matrix S we shall use the two-dimensional representa- 
tion of the su(1,1) algebra. Let S be parameterized by 

S =  b* a* ' aa* - bb* = l (19) 

The matrix elements a and b depend on E, e*, i, g*, (, and 7/. Taking into 
account the structure of BT (18) we assume all the dependence of a and b on 
e . . . . .  i* is contained in single quantity 0, i.e., a -- a(O, ~, ~) and b = b(O, ~, 71). 
We obtain two matrix differential equations 

s ~ = O s - s u ,  s ~ = f ' s - s v  

where U and V are given in (6) with two-dimensional realization of the 
generators Z~ and Z 3. while /.J and l;" follow from U and V after substitu- 
tions M i --* M~, N i ~ N r Solving these equations yields in explicit terms 

( ~ -  i}~)(O +1+ ~)+ (71 + ih ) ( e - 1  + x) a = 
2[i(X _ l)(~ + n)O]l/2 

l [ ('--i}~)(~+ i~) ] 1/2 
b = (20) 

The three-dimensional representation of S can be found in the frame- 
work of the extremely useful vector parametrization of the SU(1,1) group 
(Bogush and Fedorov, 1977; Fedorov, 1978). We get (see Appendix for 
details) 

- -  0/2 0 / ~  ~ 0t 
(~+~)~ 

S = I +  2 i ( h - l ) O  aft - / 3  2 13 (21) 

- / 3  - ~ ~ - /3  ~ 
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where 

(~ - iX)(e + 1)+ (7/+ iX ) (8  - 1) 2(~ - iX) i /z( , /+  iX) 1/2 

ix (~+*/ )  ' itr +*/) 

Inserting the matrix elements S3i found explicitly into (17) we obtain BT for 
the sigma field Q: 

Q - = [  1 - ( ~ + * / ) ( a 2 + f 1 2 ) x 2  Q -  2i(X-l)0(~+*/)x2 [ ( i a - f l ) E +  + ( i a + f l ) E  ] 

5. DIVERGENCE-FREE CURRENTS 

Knowledge of the explicit form for the connection coefficients U '  and 
V' (14) allows us to derive an infinite number of divergence-free currents. 
We define a one-form r by 

= ( ux'x + r u l e )  + ( vx'a + rvx' ) a*/ 

where F is a solution of the Riccati equations 

This form is closed, dto = 0, provided Q entering the matrix elements U~ 
and V~} is a solution of the sigma model equation. Identifying ~ with a 
one-form ,/2 d ( -  J1 d*/, where J~ is a corresponding parametric current we 
obtain parametric continuity equation J~ + -/2 - 0. By expanding in power 
series of X we get an infinite number of dwergence-free currents j(n) 
(n = 0,1 . . . .  ). Their analytic form can be derived in the following manner. 

Let us expand the sigma field Q in the su(1,1) basis, _ 3 Q - Ei~lqiri, 
where - q2 _ q~ + q~ _ 1 and make use of a su(1,1) analog of the stereo- 
graphic projection: 

b* - b b* + b 1+ b*b 
ql = i - - ,  q2 , q3 = - -  

1 - b*b 1 - b*b 1 - b*b 

where b is a complex function of ~ and ,/. Introducing then new fields 
/~ = b + b *-~ and p = b -  b *- t  we can represent the matrix Q in the form 

1 2/~ 
O = - ~  - ( / l + v ) ( / t - v )  

Subsequent calculation is strazghtforward. 

4 
- 2 , )  
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We give here the first two currents 

j(0~ = ~ .~-  ~, j~o~ = ~ , -  ~ 

J ( l ) : - 4 ( } + l ) J x ~ ~  

1 J ~ l ) : - 4 ( - ~ + 1 ) J ~ ~  

(22) 

(23) 

Here s(~, 7) is a solution of a system of linear equations 

8 ( 1  1 ) ~  t, i ( 1  l)bt_~ V' 

Equation (22) is the analog of the (local) isospin conservation law, while 
(23) and all the following ones are nonlocal divergence-free currents involv- 
ing more and more integrations. 

APPENDIX 

Let us introduce a complex vector parameter c = a e  2 + /3e - /3*e* ,  
where e 2, e = 2 - x / 2 ( e l -  ie3) and e* = 2-x/Z(et + ie3) are basis vectors, a 
and/3 are real and complex coordinates, respectively. Then any matrix from 
the SU(1,1) group is represented as 

b* a* = 1 + a ~ -  1/31 z k /3* 1 -  iot 

Taking into account the explicit expressions for the matrix elements a and b 
(20) we find the following identification: 

(~ - i ) ~ ) ( O  + 1)+ (7/+ i X ) ( O  - 1) 
i ( ~ +  n)~: 

fl = 2(~ - iX)1/2(~/+ i)~) 1/2 
i ( ~ + ~ ) x  

(A2) 

where the elements of a 3 • 3 matrix c x are related with components of the 
three-dimensional vector c by (cX)ij = e~jkC k, i, j , k  =1,2,3 ,  eij k is com- 
pletely antisymmetric unit tensor, e123 = 1. Taking then the vector e with 

C x -t- C x2  

S(e) = I + 2 - -  (A3) 
l+e 2 

The three-dimensional representation of S is given by the formula 
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coordinates a and fl(A2) and constructing the corresponding matrix c x (A3) 
yields the matrix S (21). 
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